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Abstract: These lecture notes provide an introduction to the forthcoming book [DHS13].
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Proof. Let N > M. Then, P−a.s.,

‖uN − uM‖∞ =
∥

∥

∥

N
∑

j=M+1

ujφj

∥

∥

∥

∞

≤
∥

∥

∥

N
∑

j=M+1

γjξjφj

∥

∥

∥

∞

≤
∞

∑

j=M+1

|γj ||ξj |‖φj‖∞

≤
∞

∑

j=M+1

|γj |.

The right hand side tends to zero asM → ∞ by the dominated convergence theorem and hence the sequence
is Cauchy in X .

We have P−a.s. and for a.e. x ∈ D,

u(x) ≥ φ0(x)−
∞

∑

j=1

|uj|‖φj‖∞

≥ ess inf
x∈D

φ0(x) −
∞

∑

j=1

|γj |

≥ φmin − ‖γ‖ℓ1

=
1

1 + δ
φmin.

Proof of the upper bound is similar. ✷

Example Consider the random function (2.1) as specified in this section. By Theorem 2.1 we have that,
P−a.s.,

u(x) ≥ 1

1 + δ
φmin > 0, a.e. x ∈ D. (2.3)

Set κ = u in the elliptic equation (1.4), so that the coefficient κ in the equation and the solution p are

random variables on
(

Ω,F ,P
)

. Since (2.3) holds P−a.s., Lemma 1.5 shows that, again P−a.s.,

‖p‖V ≤ (1 + δ)‖f‖V ∗/φmin.

Since the r.h.s. is non-random we have that for all r ∈ Z+ the random variable p ∈ Lr
P
(Ω;V ):

E‖p‖rV <∞.

In fact E exp(α‖p‖rV ) <∞ for all r ∈ Z+ and α ∈ (0,∞). ✷

2.3. Besov Priors

Now we set φ0 = 0 and let {φj}∞j=1 be an orthonormal basis for X . Let

X := L̇2(Td) =
{

u
∣

∣

∣

∫

Td

|u(x)|2dx <∞,
∫

Td

u(x)dx = 0
}

for d ≤ 3 with inner-product and norm denoted by 〈·, ·〉 and ‖ · ‖ respectively. Then, for any u ∈ X , we have

u(x) =

∞
∑

j=1

ujφj , uj = 〈u, φj〉. (2.4)
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We choose the prior µ0 = N(0, A−α), α > d
2 . Thus µ0(X) = µ0(H) = 1. Indeed the analysis in subsection

2.4 shows that µ0(Ht) = 1, t < α − d
2 . For the likelihood we assume that η ⊥ u with η ∼ Q0 = N(0, A−β),

and β ∈ R. This measure satisfies Q0(Ht) = 1 for t < β− d
2 and we thus choose Y = Ht′ for some t′ < β− d

2 .
Notice that our analysis includes the case of white observational noise, for which β = 0. The Cameron-Martin
Theorem, together with the fact that e−λA commutes with arbitrary fractional powers of A, can be used to
show that y|u ∼ Qu := N(G(u), A−β) where Qu ≪ Q0 with

dQu

dQ0
(y) = exp

(

− Φ(u; y)
)

,

Φ(u; y) =
1

2
‖Aβ

2 e−Au‖2 − 〈Aβ
2 e−

A
2 y,A

β
2 e−

A
2 u〉.

In the following we repeatedly use the fact that Aγe−λA, λ > 0, is a bounded linear operator from Ha to Hb,
any a, b, γ ∈ R. Recall that ν0(du, dy) = µ0(du)Q0(dy). Note that ν0(H ×Ht′) = 1. Using the boundedness
of Aγe−λA it may be shown that

Φ : H ×Ht′ → R

is continuous, and hence ν0−measurable by Lemma 3.2.
Theorem 3.3 shows that the posterior is given by µy where

dµy

dµ0
(u) =

1

Z
exp

(

− Φ(u; y)
)

,

Z =

∫

H

exp
(

− Φ(u; y)
)

µ0(du),

provided that Z > 0 for y Q0−a.s. Since y ∈ Ht for any t < β − d
2 , Q0−a.s., we have that y = A−t′/2w0 for

some w0 ∈ H and t′ < β − d
2 . Thus we may write

Φ(u; y) =
1

2
‖Aβ

2 e−Au‖2 − 〈Aβ−t′

2 e−
A
2 w0, A

β
2 e−

A
2 u〉. (3.7)

Then, using the boundedness of Aγe−λA, λ > 0, together with (3.7), we have

Φ(u; y) ≤ C(‖u‖2 + ‖w0‖2)

where ‖w0‖ is finite Q0−a.s. Thus

Z ≥
∫

‖u‖2≤1

exp
(

− C(1 + ‖w0‖2)
)

µ0(du)

and, since µ0(‖u‖2 ≤ 1) > 0 (all balls have positive measure for Gaussians on a separable Banach space) the
result follows.

3.4. Elliptic Inverse Problem

We consider the elliptic inverse problem from Section 1.3 from the Bayesian perspective. We consider the
use of both uniform and Gaussian priors. Before studying the inverse problem, however, it is important to
derive some continuiuty properties of the forward problem. Consider equation (1.5) and, define

X+ =
{

v ∈ L∞(D)
∣

∣

∣
ess inf

x∈D
v(x) > 0

}

and define the map R : X+ → V by R(κ) = p. This map is well-defined by Lemma 1.5.
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Recall that ν0(dy, du) = Q0(dy)µ0(du). G : X ′ → RJ is Lipschitz by Lemma 3.6 (in fact we only use that it
is locally Lipschitz) and hence Lemma 3.2 implies that Φ : X ′ × Y → R is ν0−measurable. Thus Theorem
3.3 shows that u|y ∼ µy where

dµy

dµ0
(u) =

1

Z
exp

(

− Φ(u; y)
)

Z =

∫

X

exp
(

− Φ(u; y)
)

µ0(du),

provided Z > 0 for y Q0 almost surely. To see that Z > 0 note that

Z =

∫

X′

exp
(

− Φ(u; y)
)

µ0(du),

since µ0(X
′) = 1. On X ′ we have that R(·) is bounded in V , and hence G is bounded in RJ . Furthermore y

is finite Q0 almost surely. Thus Φ(u; y) is bounded by M =M(y) <∞ on X ′, Q0 almost surely. Hence

Z ≥
∫

X′

exp(−M)µ0(du) = exp(−M) > 0.

and the result is proved.
We may use Remark 3.5 to shift Φ by 1

2 |Γ− 1
2 y|2, since this is almost surely finite under Q0 and hence

under ν(du, dy) = Qu(dy)µ0(du). We then obtain the equivalent form for the posterior distribution µy:

dµy

dµ0
(u) =

1

Z
exp

(

− 1

2

∣

∣Γ− 1
2

(

y −G(u)
)∣

∣

2
)

, (3.8a)

Z =

∫

X

exp
(

− 1

2
|Γ− 1

2

(

y −G(u)
)
∣

∣

2
)

µ0(du). (3.8b)

We conclude this subsection by discussing the same inverse problem, but using Gaussian priors from
subsection 2.4. We again set X = L∞(D;R), Y = RJ and, for simplicity, take D = [0, 1]d. We now take
κ = exp(u), and define G : X → RJ by

Gj(u) = lj

(

R
(

exp(u)
)

)

, j = 1, . . . , J.

We take as prior on u the measure N(0, A−α), from the example preceding the Fernique Theorem 2.6, with
α > d/2. The measure µ0 then satisfies µ(X ′) = 1 with X ′ = C(D;R). The likelihood is unchanged by the
prior, since it concerns y given u, and is hence identical to that in the case of the uniform prior, although
the mean shift from Q0 by Qu by G(u) now has a different interpretation. Thus we again obtain (3.8) for
the posterior distribution (albeit with a different definition of G(u)) provided that we can establish that

Z =

∫

X

exp
(

− 1

2

∣

∣Γ− 1
2

(

y −G(u)
)∣

∣

2
)

µ0(du) > 0.

To this end we use the fact that the unit ball in X ′, denoted B, has positive measure, and that on this ball
R

(

exp(u)
)

is bounded in V by e−1‖f‖V ∗ , by Lemma 1.5, since the infimum of κ = exp(u) is e−1 on this ball
B. Thus G is bounded on B and, noting that y is Q0−a.s. finite, we have for some M =M(y) <∞,

sup
u∈B

(1

2

∣

∣Γ− 1
2

(

y −G(u)
)∣

∣

2 − 1

2

∣

∣Γ− 1
2 y|2

)

< M.

Hence

Z ≥
∫

B

exp(−R)µ0(du) = exp(−R)µ0(B) > 0.

Thusc we again obtain (3.6) for the posterior measure, now with the new definition of G, and hence Φ.
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4. Common Structure

In this section we discuss various common features of the posterior distribution arising from the Bayesian
approach to inverse problems. We start, in subsection 4.1, by studying the continuity properties of the
posterior with respect to changes in data, proving a form of well-posedness; indeed we show that the posterior
is Lipschitz in the data with respect to the Hellinger metric. In subsection 4.2 we use similar ideas to study
the effect of approximation on the posterior distribution, showing that small changes in the potential Φ lead
to small changes in the posterior distribution, again the Hellinger metric; this work may be used to translate
error analysis pertaining to the forward problem into estimates on errors in the posterior distribution. In
the remaining two subsections we work entirely in the case of Gaussian prior measure µ0. Subsection 4.3 is
concerned with derivation and study of a Langevin equation which is invariant with respect to the posterior
µ, and subsection 4.4 concerns MCMC methods, also invariant with respect to µ, which exploit the structure
of a target measure defined via density with respect to a Gaussian; in particular, the idea of using proposals
which preserve the prior is introduced and benefits of doing so are explained.

4.1. Well-Posedness

In many classical inverse







4.2. Approximation

In this section we concentrate on continuity properties of the posterior measure with respect to approximation
of the potential Φ. The methods used are very similar to those in the previous subsection, and we establish
a continuity property of the posterior distribution, in the Hellinger metric, with respect to small changes in
the potential Φ.

Because the data y plays no explicit role in this discussion, we drop explicit reference to it. Let X be a
Banach space and µ0 a measure on X . Assume that µ and µN are both absolutely continuous with respect
to µ0 and given by

dµ

dµ0
(u) =

1

Z
exp

(

− Φ(u)
)

, (4.3a)

Z =

















This is a specific example of the approximating family in (4.4) if we define

ΦN = Φ ◦ PN . (4.17)

Indeed if we take X = X τ for any τ ∈ (t, s− 1
2 ) we see that ‖PN‖L(X,X) = 1 and that, for any u ∈ X ,

‖Φ(u)− ΦN (u)‖ = ‖Φ(u)− Φ(PNu)‖
≤M3(1 + ‖u‖t)‖(I − PN)u‖t
≤ CM3(1 + ‖u‖τ)‖u‖τN−(τ−t).

Since Φ, and hence ΦN , are bounded below by −M1, and since the function 1 + ‖u‖2τ is integrable by
the Fernique Theorem 2.6, the approximation Theorem 4.7 applies. We deduce that the Hellinger distance
between µ and µN is bounded above by O(N−r) for any r < s− 1

2 − t since τ − t ∈ (0, s− 1
2 − t).

We will not use this explicit convergence rate in what follows, but we will use the idea that µN converges
to µ in order to prove invariance of the measure µ under the SDE (4.8). The measure µN has a product
structure that we will exploit in the following. We note that any element u ∈ H











5. Bibliographical Notes

• Subsection 1.1. See [BS94] for a general overview of the Bayesian approach to statistics in the finite
dimensional setting. The Bayesian approach to linear inverse problems with Gaussian noise and prior
in finite dimensions is discussed in [Stu10, Chapters 2 and 6] and, with a more algorithmic flavour, in
the book [KS05].

• Subsection 1.2, 1.3. See [Eva98] for theory relevant to both the heat equation and the elliptic equation.
For more detail on the heat equation as an ODE in Hilbert space, see [Paz83, Lun95]. For further reading
on severely ill-posed problems see [Stu10, Chapters 3 and 6], [KvdVvZ11b], [ASZ12]; for linear inverse
problems in infinite dimensions see [Stu10, Chapters 3 and 6], [ALS12], [Man84], [LPS89], [KvDVvZ11a];
for the elliptic inverse problem – determining the permeability from the pressure in a Darcy model of
flow in a porous medium and obtaining bounds on the solution using Lax-Milgram theorem [Ric81,
DS11]; for the inverse heat equation, see [Kir96, EHN96].

• Subsection 2.1. For general discussion of the properties of random functions constructed via random-
ization of coefficients in a series expansion see [Kah85].

• Subsection 2.2. These uniform priors have been extensively studied in the context of the field of Un-
certainty Quantification and the reader is directed to [CDS10, CDS12] for more details. Uncertainty
Quantification in this context does not concern inverse problems, but rather studies the effect, on
the solution of an equation, of randomizing the input data. Thus the interest is in the pushforward
of a measure on input parameter space onto a measure on solution space, for a differential equation.
Recently, however, these priors have been used to study the inverse problem; see [SS12].

• Subsection 2.3. Besov priors were introduced in the paper [LSS09] and Theorem 2.2 is taken from that
paper. We notice that the theorem constitutes a special case of the Fernique Theorem in the Gaussian
case q = 2; it is restricted to a specific class of Hilbert spafe norms, however, whereas the Fernique
Theorem in full generality applies in all norms on Banach spaces which have full Gaussian measure. A
more general Fernique-like property of the Besov measures is proved in [DHS12] but it remains open
to determine the appropriate complete generalization of the Fernique Theorem to Besov measures.

• Subsection 2.4. The general theory of Gaussian measures on Banach spaces is contained in [Lif95,
Bog98]. The text [DZ92], concerning the theory of stochastic PDEs, also has a useful overview of
the subject. The Karhunen-Loéve expansion (2.7) is contained in [Adl81]. The informal calculation
concerning the covariance operator of the Gaussian measure which follows Theorem 2.4 may be proved
using characteristic functions; see, for example, Proposition 2.18 in [DZ92]. All three texts include
statement and proof of the Fernique Theorem in the generality given here. The Kolmogorov continuity
theorem is discussed in [DZ92] and [Adl90]. Proof of Hölder regularity adapted to the case of the
periodic setting may be found in [Hai09] and [Stu10, Chapter 6]. For further reading on Gaussian
measures see [DP06].

• Subsection 3.1. Theorem 3.1 is taken from [HSVW05]where it is used to compute expressions for the
meausure induced by various conditionings applied to SDEs. The Example following Theorem 3.1,
concerning end-point conditioning of measures defined via a density with respect to Wiener measure,
finds application to problems from molecular dynamics in [PS10, NST]. Further material concern-
ing the equivalence of posterior with respect to the prior may be found in [Stu10, Chapters 3 and
6], [ALS12], [ASZ12]. The equivalence of Gaussian measures is studied via the Feldman-Hajek theorem;
see [DPZ92] and [DZ92].

• Subsection 3.2. General development of Bayes’ Theorems for inverse problems on function space, along
the lines described here, may be found in [CDRS09, Stu10]. The reader is also directed to the papers
[Las02, Las07] for earlier related material, and to [Las11, Las12a, Las12b] for recent developments.

• Subsection 3.3. The inverse problem for the heat equation was one of the first infinite dimensional
inverse problems to receive Bayesian treatment; see [Fra70]. The problem is worked through in detail
in [Stu10]. To fully understand the details the reader will need to study the Cameron-Martin theorem
(concerning shifts in the mean of Gaussian measures) and the Feldman-Hajek theorem (concerning
equivalence of Gaussian measures); both of these may be found in [DZ92, Lif95, Bog98] and are also
discussed in [Stu10].

• Subsection 3.4. The elliptic inverse problem with the uniform prior is studied in [SS12]. A Gaussian
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[CDS12] A. Cohen, R. DeVore, and Ch. Schwab. Analytic regularity and polynomial approximation of
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